If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+15x=90
We move all terms to the left:
4x^2+15x-(90)=0
a = 4; b = 15; c = -90;
Δ = b2-4ac
Δ = 152-4·4·(-90)
Δ = 1665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1665}=\sqrt{9*185}=\sqrt{9}*\sqrt{185}=3\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{185}}{2*4}=\frac{-15-3\sqrt{185}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{185}}{2*4}=\frac{-15+3\sqrt{185}}{8} $
| n/7+5=15 | | 4x+9+6x+11=90 | | 4x-12x=50+6 | | 3x+11+6x-2=180 | | 6=15+3f | | 14+z=6+7z | | -2/3p=-6 | | 10d+0.89=0.99 | | -6+g=-9 | | –5h−4h=18 | | y-3.78=5.6 | | 2c-12=2 | | y-1.4=6 | | 12=(10-2x)(6-2x) | | 0.09n=90 | | 3j-5=2j | | 2/5=q-1.5 | | 0.01y=1 | | 0.2c+44=6 | | -4x-10=6x-40 | | 6.3m=630 | | -4(r+5)=41 | | 2/5=q-11/2 | | 15+4x=12-4x | | (x+4)/4=-10 | | 10t=3/4(t) | | y=0.002*50 | | x(8x+2)=300 | | 6x-87=15x+102 | | (2w-1)/5+w+2=2w. | | 12x²-800x+10500=0 | | X^2-5x-8=16 |